
Meet-in-the-Middle Attacks

Stephane Moore

November 16, 2010

A meet-in-the-middle attack is a cryptographic attack, first developed by Diffie and Hellman, that employs a
space-time tradeoff to drastically reduce the complexity of cracking a multiple-encryption scheme. To illustrate
how the attack works, we shall take a look at an example.
Let EK and DK denote encryption and decryption functions using the key K ∈ {0, 1}n. Similarly, let E′

K and
D′

K denote encryption and decryption functions using the key K ∈ {0, 1}m. Consider the following simple double-
encryption scheme which computes a ciphertext message C from a plaintext message P using two keys K1 ∈ {0, 1}n
and K2 ∈ {0, 1}m:

C = E′
K2

(EK1(P ))

P = DK1(D′
K2

(C))

A naive attack on this double-encryption scheme, covering the entire search space of {0, 1}n × {0, 1}m, would
require O(2n+m) encryptions. However, exhaustive searches to crack EK and E′

K individually would only take
O(2n) and O(2m) encryptions, respectively. There is an important derivation from this double-encryption scheme
that we can exploit to construct a more sophisticated attack.

C = E′
K2

(EK1(P ))

D′
K2

(C) = D′
K2

(E′
K2

(EK1(P )))

D′
K2

(C) = EK1(P )

This derivation meets in the middle of the double-encryption scheme and allows us to use exhaustive searches over
EK and E′

K in a more efficient chosen-plaintext attack. Consider one possible approach based on computing the
following sets:

H = {(K,EK(P )) : K ∈ {0, 1}n}
S = {(Ki,Kj) : Ki ∈ {0, 1}n ∧Kj ∈ {0, 1}m ∧ (Ki, D

′
Kj

(C)) ∈ H}

Here, we precompute the set of all possible encryptions of the plaintext P using EK and store a lookup table H.
Afterwards, we compute the set of all possible decryptions of the ciphertext C using D′

K and check for membership
in the lookup table. The intersections between the two described sets will contain the correct key pair (K1,K2). If
there are multiple key pairs in the intersection, then we can test the candidate key pairs using additional plaintext-
ciphertext pairs and quickly isolate the correct key pair. This constitutes a much more efficient attack on this
double-encryption scheme.
This meet-in-the-middle attack requires O(2n + 2m) encryptions to compute the two sets instead of the O(2n+m)
encryptions required by an exhaustive search. We do incur O(2n) or O(2m) space overhead, depending on the ap-
proach, in storing the lookup table; however, with modern resources, the space overhead is typically not unreason-
able. Meeting in the middle reduces the search space drastically and points out that cracking the double-encryption
scheme is computationally similar to cracking the encryption functions that compose it. The math becomes even
more alarming in the case where n = m, as this discrepancy becomes O(22n) encryptions for the naive attack and
O(2n+1) encryptions for the meet-in-the-middle attack, which is only twice what it would take to crack EK . For
this reason, simple multiple-encryption schemes tend to provide considerably fewer bits of effective security than
the actual number of key bits used in the encryption scheme.

1

http://en.wikipedia.org/wiki/Whitfield_Diffie
http://en.wikipedia.org/wiki/Martin_Hellman
http://en.wikipedia.org/wiki/Chosen-plaintext_attack


Example: E-D-E Triple DES

For a more applied example of a meet-in-the-middle attack, we shall focus on E-D-E triple encryption using the
Data Encryption Standard (DES) cipher algorithm. This encryption scheme is a keying option to Triple DES
(3DES) that uses three 56 bit keys. If EK and DK denote DES encryption and decryption functions using a key
K ∈ {0, 1}56 then our E-D-E triple encryption can be described as follows:

C = EK3
(DK2

(EK1
(P )))

P = DK1
(EK2

(DK3
(C)))

From this encryption scheme, we can derive the following:

C = EK3(DK2(EK1(P )))

DK3(C) = DK3(EK3(DK2(EK1(P ))))

DK3(C) = DK2(EK1(P ))

From this derivation, similar to the double-encryption scheme detailed before, we can describe a meet-in-the-middle
attack on the E-D-E triple encryption scheme using DES as follows:

H = {(K,DK(P )) : K ∈ {0, 1}56}
S = {(Ka,Kb,Kc) : Ka,Kb,Kc ∈ {0, 1}56 ∧ (Kc, DKb

(EKa
(C))) ∈ H}

Here, we construct a lookup table using O(256) encryptions and store it in O(256) memory. Next we find candidate
keys using O(2112) encryptions and then isolate the correct key. In this way, the meet-in-the-middle attack allows
us to find the correct keys K1, K2, and K3 in roughly O(2112) encryptions. For this reason, E-D-E triple encryption
using DES, which is the strongest keying option of 3DES, is considered to have at most 112 effective bits of security
despite having 168 key bits.

2

http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki/Triple_DES

