
Diffie-Hellman Key Exchange

Stephane Moore

November 6, 2010

1] Background

Diffie-Hellman key exchange is one of the earliest practical key exchange algorithms implemented in the field of
cryptography. It allows two parties with no prior knowledge of each other to jointly establish a shared secret
key, which can then be used in symmetric key cryptographic algorithms, over an insecure channel. Diffie-Hellman
key exchange relies on modular arithmetic and the differing computational complexity of discrete exponents and
discrete logarithms.

2] Multiplication Modulo n and Discrete Exponentiation

Modular arithmetic is a system of arithmetic for integers where numbers are confined by a modulus, resulting
in a wraparound when they reach the integer n. For arithmetic modulo n, the congruence class of an integer a
can be denoted by the set an which contains all {a + cn|c ∈ Z}. The set of congruence classes modulo n can be
denoted and defined by Zn = {an|a ∈ Z}. Diffie-Hellman relies primarily on one notable property of modular
multiplication:

anbn = (ab)n

This property is useful for discrete exponentiation because this implies that (an)k = (ak)n. This means that we can
use traditional exponentiation algorithms, such as exponentiation by squaring, to efficiently compute exponents
modulo n in O(log2k) time or better.

3] Discrete Logarithm

Discrete logarithms are the group theory analogs of ordinary logarithms. Let us consider a generator b of the
multiplicative group of integers modulo n, denoted by Z×

n . Every element in Zn can be expressed by exponentiation
of b.

∀a ∈ Zn(∃k ∈ Z | bk ∈ an)

In other words, for any a ∈ Zn, there is an integer k such that a = bk (mod n). Now consider a function
logb : Zn → Zn which, for a generator b of Zn and an input a ∈ Zn, solves for x in the equation bx = a. As of
yet, there is no known efficient algorithm for computing general discrete logarithms. The naive algorithm, trial
multiplication, yields results in O(n) time. More efficient algorithms exist but none can compete with the efficiency
of discrete exponentiation.

1

http://en.wikipedia.org/wiki/Exponentiation_by_squaring
http://en.wikipedia.org/wiki/Multiplicative_group_of_integers_modulo_n


4] Diffie-Hellman Key Exchange

The discrepancy between the computational complexities of discrete exponents and discrete logarithms form the
foundation for this key exchange algorithm. Consider the following simple example of the Diffie-Hellman protocol,
used to establish a private shared key between two parties, Alice and Bob.

1. Alice and Bob agree on a prime p and a generator g of Z×
p

2. Alice chooses a secret integer a and sends Bob A = ga mod p
3. Bob chooses a secret integer b and sends Alice B = gb mod p
4. Alice computes s = Ba = (gb)a = gba mod p
5. Bob computes s = Ab = (ga)b = gab mod p

At the end of the exchange, Alice and Bob have established a shared key because gab and gba are equal modulo
p. This shared key is private because it is difficult for an eavesdropper to calculate gab mod p given p, g, A = ga

mod p, and B = gb mod p. This is called the Diffie-Hellman problem. Alice and Bob can efficiently compute gab

mod p through discrete exponentiation whereas an eavesdropper typically has to perform a costly discrete logarithm
first. For properly chosen values of p and g, there is currently no known efficient way for an eavesdropper to calculate
the shared key. This makes Diffie-Hellman Key Exchange a powerful tool in asymmetric cryptography.

2

http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_problem

